

Example 1: A giant sequoia tree has an initial diameter of 4.320 meters and it grows 0.003 meters in diameter each year thereafter.
a.) Find an equation that models the diameter \boldsymbol{d} of the tree after t years.

$$
d=0.003 t+4.320
$$

b.) Find the diameter of the tree after 100 years.

$$
d(100)=0.003(100)+4.320
$$

$0.3+4.320$
$d=4.620 \mathrm{~m}$
Example 2:

In one state, for speeding on a 65 -mile-per-hour highway a person may be fined $\$ 50$ as well as an additional $\$ 10$ for each mile per hour over the speed limit.
18. Complete the table to show the total fine F for various speeds s.

Speed (mph)	Fine (\$)
65	0
66	$50+10(1)=60$
67	$50+10(2)=70$
68	$50+10(3)=80$
69	$50+10(4)=90$
70	$50+10(5)=100$

19. Identify the independent and dependent variables. Explain your The amount fined depends on the choices. indep: speed dep'. fine speed you drive.
20. Complete the following sentence to describe the way the fine depends on speed: "The total fine is $\$ 50$ plus \qquad ""\$10 for every mph over 65 mph"
21. Write an equation that models the total fine F (in dollars) for any speed s that is at least 65 mph .

$$
F=50+10(s-65)
$$

22. Find the total fine if a person is caught going 78 miles per hour.

$$
\begin{aligned}
F(78) & =50+10(78-65) \\
& =50+10(13) \\
& =50+130 \\
& =\$ 180
\end{aligned}
$$

Example 3:
The figure below shows a wind $2 v\left(\frac{1}{5} \cdot 5\right)^{t s}$ frame.

a. Write an equation that relates the height h and width w of the inside dimensions of the window to the total length L of $L=20[2 h+2(\omega+3)]$ framing material needed for 20 identical windows in a house. (Assume that the frame is $1 \frac{1}{2}$ inches wide.)
b. How much framing material is needed if each window is 2 feet wide and 3 feet high?

$$
\begin{aligned}
& w=2 \mathrm{ft}=24 \mathrm{in} \\
& w=3 \mathrm{ft}=36 \mathrm{in}
\end{aligned}
$$

$$
\begin{aligned}
L & =20[2(30)+2(24+3)] \\
L & =20[72+2(27)] \\
L & =20[72+54] \\
& =20[126] \\
L & \left.=2520^{\prime \prime} \text { or } 210^{\prime}\right]
\end{aligned}
$$

