Warm-Up! Transitive and Sulestitution
1: Given: $\angle 1$ is supplementary $\angle 2 \angle 3$

$$
\angle 2 \cong \angle 3
$$

Conclusion: $\qquad$ $\angle 1$ is supp $\angle 3$

Reason: $\qquad$ Substitution Property


Conclusion: $\angle 3$ IS comp to $\angle 2$ Reason: Substitution property
NOTE: When using the SUBSTITUTION PROPERTY the statement that corresponds with it will always be NON-CONGURENT!!!

3: Given:

$$
\begin{aligned}
& \overline{\mathrm{AB}} \cong \overline{\mathrm{BD}} \\
& \overline{\mathrm{BD}} \cong \overline{\mathrm{EF}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Conclusion: } & \\
\text { riven: } & \angle 1 \cong \angle 3 \\
& \angle 2 \cong \angle 3 \\
& \angle 2 \cong \angle 4
\end{aligned}
$$

$$
\overline{A B} \cong \overline{E F}
$$

4: Given:
Reason: $\qquad$ Transitive Property


Conclusion: $\qquad$ $\angle 1 \cong \angle 4$ Reason: $\qquad$ Transitive Property

NOTE: When using the TRANSITIVE PROPERTY, the statement that corresponds with it will ALWAYS be CONGURENT!!! It's just chain reasoning!!

5: Given: $\angle 1$ is a straight angle

$$
\angle 1 \cong \angle 2
$$

Conclusion: $\angle 2$ is a straight $\angle$
Reason: Substitution Property
6. Given: $\angle 1 \cong \angle 2$

$$
\angle 2 \cong \angle 3
$$

Conclusion: $\qquad$ $\angle 1 \cong \angle 3$

Reason: Transitive Property

A Twa Column Proof Description:

| Statements |  |
| :--- | :--- |
|  |  |

1. Every proof will start with a $\qquad$ given statement.
2. Every proof will end with the $\qquad$ statement.
3. Every proof has numbered statements and reasons!

- Remember that reasons should always be written as if ..., then..." statements (conditional)
- The hypothesis "if" of the reason always comes from the previous step.
- The Conclusion "the not the reason always refers to information from the current step.

Use the information below to write a two column proof:

1) Given: $\measuredangle \mathrm{ABD}$ and $\measuredangle \mathrm{CBD}$ form a linear pair

Prove: $\measuredangle \mathrm{ABD}$ and $\measuredangle \mathrm{CBD}$ are supplementary

(1) $\frac{\text { Statements }}{\angle A B D}$ and $\angle C B D$ form a linear pair (i) Given
(2) $\angle A B D$ and $\angle C B D$ are supplementary (2) If $2 \angle '$ form a linear pair, then they are supplementary.
2) Given: $\overrightarrow{\mathrm{DB}}$ bisects $\angle \mathrm{ADC}$

Prove: $\angle \mathrm{ADB} \cong \angle \mathrm{BDC}$

(1) $\overrightarrow{D B}$ Sisecenents $\angle A D C$.
(2) $\angle A D B^{N}=\angle B D C$
(1) Given

Reasons
(2) If a ray bisects an $\angle$, then it $\div$ the angle into $2 \cong L$ s.

