
Find the indicated for each of the following figures.

$$LSA = p \cdot h$$

= $(5+5+6+6)10$
= $(22)10$
= 220 cm^2

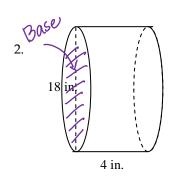
$$= (22)10$$

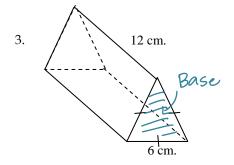
$$= 220 \text{ cm}^{2}$$

$$TSA = LSA + 2 \cdot ABase$$

$$= 220 + 2(5 \cdot 6)$$

$$= 220 + 60$$


$$= 280 \text{ cm}^{2}$$


$$V = A_{Base} \cdot h$$

$$= 30.10$$

$$= 300$$

LSA =
$$p \cdot h$$

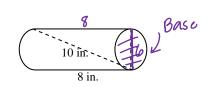
= $18\pi \cdot 4$
= 72π
TSA = LSA + $2 \cdot A$ Base
= $72\pi + 2(81\pi)$
= 334π

LSA = p.h
=
$$(4+6+6)\cdot 12$$

Base = 216

$$TSA = LSA + 2 \cdot Arbase$$

= 216 + 2($b^2\sqrt{3}$)


$$V = A_{Base} \cdot h$$

= $9\sqrt{3} \cdot 12$
= $108\sqrt{3}$

Total Area =
$$(216 + 18\sqrt{3}) \text{ cm}^2$$

Volume =
$$108\sqrt{3}$$
 cm³

Parallel Cross Section: triangle

5.

6 cm.

= 661

= 91T-8

= 7211

$$LSA = p \cdot l$$

= 8bTT + 2 (64T)

= 208TT

Lateral Area = 48 m in²

Parallel Cross Section: CIrde

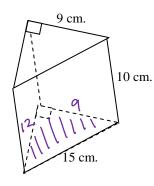
Total Area = _____

Volume =

lelett in2

721 In3

Total Area = $\frac{208}{100}$ Total Area


Volume = $\frac{512T}{3}$ cm³

Parallel Cross Section: CIrcle

$$V = A_{Base} \cdot h$$

$$= 64\pi \cdot 8 = 512\pi$$

6.

LSA=p.h

10 cm.

=(9+12+15)10

= (36)10

TSA = LSA + 2. ABase = 360 + a (9.12)

V= ABase.h

= 54.10

=540

Lateral Area = $\frac{360 \text{ cm}^2}{}$

Total Area = $\frac{4 \log cm^2}{}$

540 cm3 Volume =

Parallel Cross Section: triangle

A right cylindrical tank is 8 ft in diameter and 20 ft tall. How many gallons of paint are needed to paint the tank if one gallon covers 200 sq ft? (note: you are painting the top and the bottom) ★ TSA+

7. 4 gal

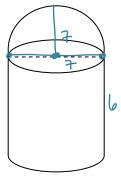
TSA = LSA + 2. A Base

= p.h + 21112

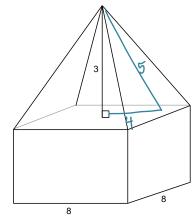
 $=8\pi \cdot 20 + 2\pi (4)^{2}$

= 160TT + 32TT

 $\frac{\text{gal}}{\text{sgft}} \frac{1}{200} = \frac{\chi}{192\pi}$


X23.02

 $=160\pi + 5211$ We would need 4 gal $=192\pi + 521$ or $=192\pi + 52$ or $=192\pi + 52$ to paint the tank.


Volume =
$$36\pi$$
 cm³

TSA =
$$4\pi Y^{2}$$

 $36\pi = 4\pi Y^{2}$
 $9 = Y^{2}$
 $3 = Y^$

$$SA_{H6} = 2\pi r^2$$

= $2\pi (7)^2$
= 98π

$$LSA_{pyr} = \underbrace{P.\ell}_{2}$$

$$= \underbrace{32.5}_{2}$$

Surface Area =
$$\frac{272 \text{ u}^2}{}$$

TSA =
$$98\pi + 84\pi + 49\pi$$

TSA = 331π

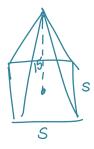
Surface Area = $\frac{272}{4}$

$$= \frac{32.5}{3}$$

$$= 80$$

LSA prism = $\frac{9.1}{3}$

$$= \frac{32.4}{3}$$


$$= \frac{32.4}{$$

$$V_{prism} = Abase \cdot h$$

$$= 64 \cdot 4$$

$$= 256$$

$$V = 64 + 256$$

$$V = A_{\text{Base}} \cdot h$$

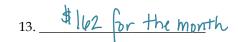
$$1805 = 8^2 \cdot 15$$

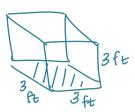
$$1805 = 5s^2$$

$$361 = 5^2$$

The surface area of a right circular cone is 728π cm² and the diameter is 26 cm. Find the slant height of the cone.

$$TSA = LSA + ABase$$

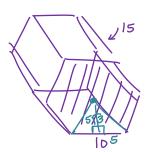

$$= p.l + \pi r^{2}$$


$$728\pi = 26\pi \cdot l + \pi (13)^{2}$$

$$728\pi = 13\pi l + 169\pi$$

$$559\pi = 13\pi \cdot l \rightarrow l = 4$$

 $559\pi = 13\pi \cdot L \rightarrow L = 43$ 13. Lisa needs to store 8 boxes while she is moving. Each box is a cube with edge length 3 feet. A storage facility charges \$0.75 for every cubic foot of storage per month. Find the amount of money Lisa will pay to store her boxes for one month.


$$V = A_{Base} \cdot h$$

$$= (3.3) \cdot 3$$

$$= 27 f_{t^3} \times 1.75 = 120.25 \times 8 \text{ boxes} = 162$$

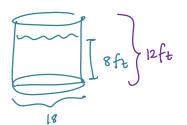
14. Find the total surface area and volume of a regular hexagonal prism with a base edge of 10 and a height of 15.

Surface Area = $\frac{(900 + 300 \%)u^2}{}$

$$TSA = LSA + 2 \cdot ABasc$$
= $p \cdot h + 2 \left(\frac{a \cdot p}{2} \right)$
= $\left(10 \cdot 6 \right) \cdot 15 + 2 \left(\frac{56360}{2} \right)$
= $900 + 300\sqrt{3}$

TSA = LSA + 2. ABase
$$V = ABase \cdot h$$
 Volume = $2,250\sqrt{3} \cdot u^3$ = $(10.6)15 + 2(\frac{51360}{2})$ = $2,250\sqrt{3}$

15. What would happen to the volume of a cone if the height were doubled?


the volume would also

16. What would happen to the volume of a prism of the length, width and height were tripled?

the volume would be multiplied by 27

A right cylindrical water tank 18 ft in diameter contains water to a depth of 8 ft. What volume of water must be added to raise the water level to 12 ft?

17. ___324 Tr ft3

$$V = A_{Base} \cdot h$$
 $V = A_{Base} \cdot h$ $V = A_{Base$