7.4 APPLYing PROPERHES Of SIMLLZR TRIangles

1) \triangle HAR is a dilation of \triangle HET by a factor of 4 .
a) Find the side lengths of $\triangle H A R$.

$$
\mathrm{HA}=\frac{3 \times 4}{\uparrow}=12
$$

$$
\mathrm{HR}=5 \times 4=20
$$

$$
A R=7 \times 4=28
$$

scale factor (enlargement)
b) Find the remaining side lengths.

$$
E A=12-3=9
$$

$$
T R=20-5=15
$$

2) Determine if $\triangle \mathrm{HET} \sim \Delta \mathrm{HAR}$. If your answer is yes, include the property and similarity ratio. If your answer is no, explain why not. Show work to justify your answer.

$$
\left(\frac{H E}{H A}=\frac{E T}{A R}=\frac{H T}{H R}=\frac{1}{4}\right) \text { Then ratio is } 1 / 4
$$

3) If the triangles are similar, what other information do you know that is not marked in your diagram. (Hint: In similar triangles, you know that angles are Congruent and sides are proportional. What have we not talked about yet?)
Since the Δ 's are \sim, the corresponding L 's are \cong :
(1) $\angle H \cong \angle H$
(2) $\angle H E T \cong \angle A$
(3) $\angle H T E \cong \angle R$
4) Based off of the information above, determine which proportions are true and which ones are false.
a) $\frac{H E}{H A}=\frac{H T}{H R}$ \qquad b) $\frac{E T}{\dot{A} R}=\frac{H T}{H R}$

$$
\left(\Delta_{S} \quad \frac{1}{4}=\frac{1}{4} V\right.
$$

$$
\frac{E T}{A R}=\frac{H T}{T R}
$$

$v^{2}, \angle \frac{E T}{A R}=\frac{H T}{T R}$

$$
\frac{7}{28} \neq \frac{5}{15}
$$

d) $\frac{H E}{H T}=\frac{E A}{T R}$
Δ Proportionality $\frac{3}{5}=\frac{3}{5} \lambda$

$$
\frac{H E}{E A}=\frac{H T}{T R}
$$

$$
\frac{H E}{E A}=\frac{E T}{A R_{B}}
$$

는 $\neq \frac{B}{B} \quad \frac{1}{3} \neq \frac{1}{4}$

$$
\frac{L}{L}=\frac{R}{R}
$$

used Δ proportionality
The incorrectly... cannot use/

$$
\frac{L}{R}=\frac{L}{R} V
$$ base of Δ s

There are two different rules we can use to solve for missing sides:
SImILe TRIangles: ALways works! * Sides are proportional*

$$
\frac{\text { Side in small } \Delta}{\text { Side in large } \Delta}=\frac{\text { side in small } \Delta}{\text { side in large } \Delta}
$$

Example 1: Set up a proportion and solve for LS.

opt 2: \triangle Prop.

$$
\begin{aligned}
\frac{8}{x} & =\frac{10}{15} \\
10 x & =120 \\
x & =12 \\
L S & =12
\end{aligned}
$$

opt 1: ~ \sim 's

$$
\frac{8}{18}=\frac{x}{x+15}
$$

$$
\begin{gathered}
18 x=8 x+120 \\
10 x=120 \\
x=12 \\
L S=12
\end{gathered}
$$

$$
\begin{aligned}
18 x & =120 \\
x & =6^{2 / 3} \text { s } M L=6^{2 / 3}
\end{aligned}
$$

Example 3: Set up a proportion and solve for BK.

opt 1:

$$
\begin{aligned}
\frac{1}{5} & =\frac{1}{1+x} \\
1+x & =5 \\
x & =4 \text { so } B K=4
\end{aligned}
$$

opt 2:

$$
\frac{1}{4}=\frac{1}{x}
$$

$$
x=4 \text { so } B K=4
$$

Example 5: How is this diagram different from the ones above?
There are no $\triangle s$) but the 11 lines divide the transversals proportionally!

$$
\frac{A C}{B D}=\frac{C E}{D F} \text { or } \frac{A C}{A E}=\frac{B D}{B F} \text { etc! }
$$

Example 6: Solve for BD.

$$
\begin{aligned}
& \frac{2}{x}=\frac{6}{8} \\
& 6 x=16 \\
& x=16 / 6 \\
& x=8 / 3 B D=8 / 3
\end{aligned}
$$

Example 7: Solve for BD.

TRIAngle PROPDRHOONalHY Theorem:

* The parallel lines divide the SIDES of the Δ proportionally (not the BASEs)

$$
\text { Lara se } \frac{L}{R}=\frac{L}{R} \frac{L}{\text { Base }} \neq \frac{L}{\text { Base }}
$$

Example 2: Set up a proportion and solve for ML.

Example 4: Set up a proportion and solve for $C B$.
 Since looking for a base

$$
\frac{8}{18}=\frac{x}{15}
$$

for a b as use ~ D's

$$
\begin{aligned}
& \frac{1}{5}=\frac{5}{x} \\
& x=25 \\
& C B=25
\end{aligned}
$$

