11.6 HW Solutions

1 a. On the same set of axes, sketch three parabolas. Sketch one that has no zeros and label it A. Sketch a second one that has two zeros and label it B. Sketch a third one that has exactly one zero and label it C.

2. Complete the area model to the right to show the factors of the trinomial $x^2 + 8x + 12$. What are the factors?

C X	
(X+6)	(X+2)

Factor the polynomial. Use an area model if needed.

3.
$$2t^2 + 5t$$

4.
$$m^2 + 12m + 20$$

3.
$$2t^2 + 5t$$
 4. $m^2 + 12m + 20$ **5.** $y^2 - 17y - 18$ **6.** $2x^2 - 14x + 20$

6.
$$2x^2 - 14x + 20$$

Solve the equation by graphing. Estimate the solution if necessary.

7.
$$x^2 + 4x - 21 = 0$$
 8. $9k^2 = 144$

8.
$$9k^2 = 144$$

9.
$$4d^2 - 9d = 25$$

$$d = -1.62$$

Solve the equation by factoring,

10.
$$3x^2 - 5x = 0$$

11.
$$2n^2 + 7n + 3 = 0$$

12.
$$v^2 + 16 = 8t$$

$$(3x-5)=0$$

- **13.** Knowing the roots of a quadratic equation can help you factor the equation. For example, if the roots to the equation $x^2 7x + 10 = 0$ are 2 and 5, then x = 2 or x = 5. So the factors must be (x 2) and (x 5). You can check your factors by multiplying (x 2) by (x 5). The product $x^2 7x + 10$ confirms your factors.
 - a. The roots to the equation $x^2 3x 4 = 0$ are 4 and -1. Use this information to factor $x^2 3x 4$.
 - **b.** The roots to the equation $x^2 + 8x + 12 = 0$ are -6 and -2. Use this information to factor $x^2 + 8x + 12$.

a)
$$X=+ x=-1$$

 $X-+=0 X+1=0$
 $(x-+)(x+1)=0$

b)
$$X=-6$$
 $X=-2$
 $X+6=0$ $X+2=0$
 $(X+6)(X+2)=0$

- **14.** A flare is launched from a life raft. The function $h = 192t 16t^2$, where h represents the height of the flare in feet after t seconds, can be used to model the path of the flare.
 - a. When is the flare 512 feet above the raft? Ofter 4 and 8 Seconds
 b. How long is the flare in the air? after 12 Seconds
 - a) $512=192t-16t^2$ $0=-16t^2+192t-512$ $0=-16[t^2-12t+32]$ 0=-16[t-8](t-4) t=8
- b) $0 = 192t 16t^2$ $0 = -16t^2 + 192t$ 0 = -16t(t - 12) t = 0 t = 12The flare is on the ground at 0 secs and 12 secs.
- **15.** A heavy brick is tossed into the air from a height of 48 feet. The function $h = -16t^2 + 32t + 48$ can be used to model the height h of the brick after t seconds. How long will it take for the brick to hit the ground?

$$0 = -16t^{2} + 32t + 48$$

$$0 = -16(t^{2} - 2t - 3)$$

$$0 = -16(t - 3)(t + 1)$$

$$t = 3 \quad t \rightarrow \checkmark$$

The brick will hit the ground in 3 seconds.

16. Solve (x + 2)(x + 8) = 40 by factoring.

$$x^{2} + 10x + 16 = 40$$

 $x^{2} + 10x - 24 = 0$
 $(x + 12)(x - 2) = 0$
 $(x = -12)(x = 2)$

17. Some quadratic equations can be solved by taking the square root of each side of the equation. For example,

Original equation $3t^2=36$ Divide both sides by 3. $t^2=12$ Take the square root of each side. $t=\pm\sqrt{12}$ Simplify. $t=\pm2\sqrt{3}$

Approximate the roots. $t \approx 3.5$ and $t \approx -3.5$

- **a.** Solve $8x^2 32 = 0$ for *x*.
- **b.** Solve $(x + 4)^2 = 7$ for x. Leave your answer in radical form.

a)
$$8x^{2}-32=0$$

 $8x^{2}=32$
 $x^{2}=4$
 $x=\pm 2$

b)
$$(x+4)^2 = 7$$

 $x+4 = \pm \sqrt{7}$
 $x = -4 \pm \sqrt{7}$