11.5 HW Solutions

Find the sum or difference.

1.
$$(x^3 + 2x - 10) + (x^3 - x^2 + 4)$$
 $2x^3 - x^2 + 2x - 6$

3.
$$(2a+4b-4c)-(5a+2b-c)$$
 3a+2b-3c

4.
$$(2xy - 3y^2 - 3x) - (5y^2 + 2x - 4xy)$$
 (exy -8y²-5X
5. $(x^2 - 10) + (x^2 - 3x + 7) - (3x^2 + x - 8)$ -4x+5

5.
$$(x^2 - 10) + (x^2 - 3x + 7) - (3x^2 + x - 8)$$

6.
$$(2a^2 - 5ab - b^2) - (4a^2 + ab + 5b^2) - (ab + a^2)$$

Find the product.

7.
$$5(p^2-4p-2)5p^2-20p-10$$

8.
$$3y(2y^2-y+1)$$
 (243-342+34)

9.
$$(2t+6)(3t+5)$$

12.
$$(2m^2 - 5n)(m^2 - 3n) 2m^2 - 11m^2n + 15n^2$$

Find the product.

7.
$$5(p^2 - 4p - 2)5p^2 - 20p - 10$$

8. $3y(2y^2 - y + 1)$ ($yy^3 - 3y^2 + 3y$)

9. $(2t + 6)(3t + 5)$ ($bt^2 + 28t + 30$)

10. $(6 - 2w)(w + 7)$ ($bw + 42 - 2w^2 - 14w \rightarrow (2w^2 - 8w + 4y - 3y^2)$

11. $(2x + 3y)(2x - y) + 4x^2 - 2xy + (bxy - 3y^2 - 4x^2 + 4xy - 3y^2)$

12. $(2m^2 - 5n)(m^2 - 3n) + 2m^2 - 11m^2 + 15n^2$

13. $2(3h - 2)(4h + 7) + 2(12h^2 + 13h - 14) - 24h^2 + 26h - 28$

14. $4(a + 4b)(a - 3b) + (a^2 - 3ab + 4ab - 12b^2) \rightarrow 4a^2 + 4ab - 48b^2$

- 15. Write two polynomials whose sum is 3x³ + 2x² 5x + 3.
 16. Write two polynomials whose difference is -5y² 7y 2.

- 17 a. Write an expression to represent the perimeter of the rectangle to the left. $2(\omega x + 1) + 2(3x - 1) \rightarrow 12x + 2 + \omega x - 2 \rightarrow 18x$ b. Write an expression to represent the area of the
 - rectangle. $A = b \cdot h$

$$A = (bx+1)(3x-1)$$

 $A = 18x^2 - 3x - 1$

18. The area model shown in the figure below can be used to show the product of (2x + 1) and (x + 3).

a. Complete the model by replacing each question mark with the

- a. Complete the model by replacing each question mark with the area of the indicated rectangle.
- b. Use your model from Part (a) to find a polynomial expression 2x2+7x+3 for (2x + 1)(x + 3).
- c. Verify your results algebraically.

(2X+1)(x+3)

19. You can also use an area model to help you find the square of a binomial. Draw an area model for each expression. Find the total sum of the areas of the rectangles and write your sum as a trinomial.

Square Double Square

a.
$$(x+5)^2 = x^2 + 10x + 25$$

b.
$$(y + 8)^2 = y^2 + 16y + 64$$

c. Look carefully at your answers to Parts (a) and (b). Use your observations to fill in the blanks in the following:

$$(a+b)^2 = a^2 + 2ab + b^2$$

The square of a + b is the square of \underline{a} plus twice the product of a · b ____plus the square of ____

- d. Find $(x-7)^2$. Use an area model if needed. $x^2-14x+49$
- e. What number would you add to the expression below to make it a perfect square trinomial? Use an area model if needed.

$$x^2 + 12x + 36$$

(X+6)(X+6)

20. If you cut the corners out of a rectangular piece of cardboard and then fold up the flaps, you can make a box.

- a. Once the cardboard is folded, what are the length, width, and height of the box in terms of x? (3b-2x) in; (20-2x) in; x in.
- b. What is the volume of the box? $V = 1 \cdot w \cdot h = x(36-2x)(20-2x) in^3$ or
- c. Assuming that the box has no lid, what is the outside surface area of the box?

area of the box?

$$S.A. = 2 \cdot x(20-2x) + 2 \cdot x(3b-2x) + (3b-2x)(20-2x)$$

 $= 40x - 4x^2 + 720 \cdot 10^2 + 720 - 112x + 4x^2$
22. Multiply $(x + 1)(2x^2 + x + 4)$.

$$2x^3 + x^2 + 4x + 2x^2 + x + 4$$

 $2x^3 + 3x^2 + 9x + 4$