11.3 HW Solutions

For Exercises 1-3, sketch the graph of the function.

1.
$$y = x^2 + 2x + 2$$

2.
$$y = x^2 - 4x + 2$$

3.
$$y = -x^2 + 2x - 3$$

For Exercises 4-6, find the vertex of the function and determine whether it is a maximum or minimum.

4.
$$y = -3x^2 + 6x - 1$$

5.
$$y = x^2 - 5$$

6.
$$y = 8x - 2x^2$$

4.
$$\bigwedge$$
 maximum-since "a" is negative, the parabola will face down $X=-b=-b=1$ $y=-3(1)^2+b(1)-1$ Vertex $(1,2)$ $y=2$

5. Minimum-Since "a" is positive, the parabela will face up

$$\begin{array}{c|c}
X = -0 \\
\hline
z(1) & Vertex(0,-5)
\end{array}$$

$$X = -8$$

 $2(-2)$ | Vertex (2,0) |
 $X = 2$

- 7. Consider the graph of $y = x^2 4x + 1$. Before graphing this function, use the observations you made about graphs of quadratic functions in the Investigation to answer the questions
 - a. Does the graph open upward or downward? Explain how you
- a) upward since "a" is positive

b)
$$x = 4$$
 $y = (2)^2 - 4(2) + 1$ vertex $(2, -3)$

quadratic functions in the Investigation to answer the questions in Parts (a) - (d).

- a. Does the graph open upward or downward? Explain how you
- b. What are the coordinates of the vertex of the graph? Is it a maximum or minimum? Explain how you know.
- c. What is the equation of the axis of symmetry of the graph?
- d. What is the domain of the function? What is the range?
- e. Graph the function.

- **a.** Without graphing the functions $y = 2x^2 + 3x + 6$ and $y = -3x^2 + 12x + 6$, predict how they differ.
 - b. Graph each function to see if your prediction in Part (a) is
- WIDER

c) x=2

 $y = -3x^2 + 12x + 6$ $y=2x^2+3x+6$ VS Faces down Faces up has a minimum has a maximum narrower X = -b = -3 = -3 2a = 2(2) = 4 $X = \frac{-12}{2(-3)} = 2$ different vertices

The vertex is a minimum since the "U"

d) Domain: $(-\infty, \infty)$

Range: [1, ∞)

isfacing upwards.

- y=-3(2)2+12(2)+6 y=2(-3)2+3(-3)+6 y = -3(4) + 24 + 6 y = 18 vertex(2, 18)y=2(9)-9+6 y=918-9+6 y=9-18+48 y = 39 Vertex (-3,39)
- **9.** A model rocket rises vertically so that its height h above the ground (in feet) is given by $h = -16t^2 + 300t$, with time t measured in seconds.
 - a. In how many seconds after the rocket is launched will it reach its maximum height?
 - b. What is the maximum height that the rocket will reach before it begins its descent?
 - 10. Many functions have graphs that are transformations of graphs of simpler functions. For example, the graph of $y = x^2 + 3$ is a vertical shift of $y = x^2$ upward by three units. For Parts (a)–(d), compare the graph of the given function to the graph of $y = x^2$

a.
$$y = x^2 - 2$$

b.
$$y = -x^2$$

- X=-b Maximum height 2a Breached after X=-300 approx 9.4sec 2(-16)
 - X29.4
- a) the graph of y=x²
 Shifted down 2 units
- b) h=+6(9.4)2+300(9.4) ha 1,406 fz

Maximum height Is approx 1,406ft

b) the graph of y=x² reflected over the x-axis

simpler functions. For example, the graph of $y = x^2 + 3$ is a vertical shift of $y = x^2$ upward by three units. For Parts (a)–(d), compare the graph of the given function to the graph of $y = x^2$.

a.
$$y = x^2 - 2$$

b.
$$y = -x^2$$

c.
$$y = (x - 3)^2$$

d.
$$y = (x+5)^2 + 4$$

11. Compare the graph of the given function to the graph of $y = x^2$. Let c be a positive real number.

a.
$$y = (x - c)^2$$

b.
$$y = (x + c)^2$$

c.
$$y = x^2 + c$$

d.
$$y = x^2 - c$$

- shifted down 2 units reflected over the
- c) the graph of y=x²
 Shifted right 3 units
- d) the graph of y=x2 Shifted teft Sunits and up 4 units
- a) the graph of y=x²
 Shifted cunits to
 the right
- c) the graph of y=x² Sniffed cunits up
- b) the graph of y=x²
 Shifted cunits
 to the left
- d) the graph of y=x² shifted cunits dwn