Direct Proportion: © One quantity is directly proportional to another if the ratios of the two quantities are * A constant. x graph of the quantives is a line that includes $(0,0)$. *Equation $y=k x$ " y is directly proportional to x "
Function: $* A$ function " varies directly with x " in which each input value $P_{\text {has }}$ exactly one output solve *Provides a way of finding a unique output value for evens possible neut value.
Example 1: $8 / 5$ every possible naut value.
a.) Use the regulating line for the Notre Dame proportioning system to estimate the width of a similar rectangle with a height of 200 feet.

$\approx 120 \mathrm{ft}$
b,) Use a proportion to calculate the width.

$$
\frac{h}{\omega}
$$

$$
\frac{8}{5}=\frac{206}{w}
$$

$$
\begin{aligned}
& 0=000 \mathrm{AFH} \\
& \omega=125
\end{aligned}
$$

Example 2: The table shows the cost of having various amounts of clothes washed at a drop-off laundry.

Weight of Clothes (lb)	Cost (\$)
4	5.20
6	7.80
9	11.70
13	16.90

$$
\begin{aligned}
& \frac{5.20}{4}=1.3 \\
& \frac{7.80}{6}=1.3
\end{aligned}
$$

$$
\frac{11.1}{9}=1.3
$$

$$
\frac{16.9}{13}=1.3
$$

a.) Verify that cost is directly proportional to weight. yes $=1.3$
b.) Write an equation that models cost C as a function of weight, w.

$$
\frac{c}{\omega}=1.3 \quad C=1.3 \omega
$$

c.) Draw a graph of cost vs. weight.

$$
\begin{aligned}
& C=1.3 \omega \quad C=1.3(8) \\
& \qquad C=\$ 10.40^{\circ}
\end{aligned}
$$

Example 3: $\begin{aligned} & \text { A person's red blood cell count can be estimated by looking at a } \\ & \text { drop of blood under a microscope. The number of cells inside the }\end{aligned}$

If the area of the circle is known, then area can be used as a
measure of the number of blood cells. The number of cell
measure of the number of blood cells. The number of cells varies
directly with area.
a. Assume that a $0.01 \mathrm{~mm}^{2}$ viewing field contains 23 red blood
cells. Find an equation for the number N of red blood cells as a
cells. Find an equation for the number N of red blood cells as a
function of area A.
b. Use your equation from Part (a) to determine how many red
blood cells are contained in an area of $50 \mathrm{~mm}^{2}$.

$$
2300=k
$$

$$
\begin{aligned}
& N=2300(50) \\
& N=115,006 \text { blood cell }
\end{aligned}
$$

