Part 1: Midpoints with Coordinates

1) Graph and label the following points:
$A(2,1), B(8,11)$ and $C(8,1)$
2) Locate and label point E, the midpoint of $\overline{A C}$. What is the relationship between coordinate points A, C, and E ?
$E(5,1), E$ is halfway between B;C.

$$
\text { Avg. of } x^{\prime} s \text { avg. of } y^{\prime} s
$$

3) Locate and label point F, the midpoint of $\overline{B C}$. What is the relationship between B, C, and F ?

$F(8,6)$, avg. of x-coordinates 乡 average of
the y-coordinates.
4) Based on your findings from \#2-3, locate point G, the midpoint of $\overline{A B}$. What is the coordinate point of $G: \frac{2+8}{2}=\frac{10}{2}=5 \quad y_{0}^{:} \frac{1+11}{2}=\frac{12}{2}=$
5) In your own words, explain how to find the midpoint of a segment.

Avg. of x-coordinates
Avg. of y-coordinates
6) Let's come up with a Midpoint Formula: Given $\left(x_{1}, y_{1}\right)$

$$
\left(x_{2}, y_{2}\right)
$$

7) Extend: Find two points on segment $\overline{\mathrm{MN}}$ that divide the segment into three congruent parts when $\mathrm{M}(0,0)$ and $\mathrm{N}(9,6)$,

$$
(0,0) M(3,2) \quad(6,4) \quad N(9,6)
$$

8) Describe a way to find points that divide the segment $\overline{\mathrm{MN}}$ into fourths.

9) Find the midpoint of $\overline{C D}$ when $C(-2,-1)$ and $D(4,3)$.

$$
\frac{\left(-\frac{c|c| c \mid}{2},-\frac{1+3}{2}\right)}{(1,1)}
$$

2) Find the midpoint of $\overline{\mathrm{MN}}$ when
3) M is the midpoint of $\overline{A B}$. A is located at $(2,2)$ and the midpoint is at $(4,-3)$. Find the other endpoint B.

A

$$
\begin{align*}
& \frac{2+x}{2}=4 \tag{1}\\
& 2+x=8 \\
& x=6
\end{align*}
$$

$$
\frac{2+y}{2}=-3
$$

$$
2+y=-6
$$

$$
y=-8
$$

Part 3: Distance Formula

$$
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

1) Use the diagram to find the distance of $\overline{A B}$ and $\overline{C D}$.
$\overline{\mathrm{x}}=8$ (count!)

$$
\begin{aligned}
\overline{C D} & =\sqrt{(7-3)^{2}+(2-9)^{2}} \\
& =\sqrt{4^{2}+(-7)^{2}} \\
& =\sqrt{16+49}=\sqrt{65}
\end{aligned}
$$

2) Find the distance between $J(-5,-2)$ and $K(-3,-9)$.

$$
\begin{aligned}
& d=\sqrt{(-3+5)^{2}+(-9+2)^{2}} \quad \times_{1} \quad x_{2} y_{2} \\
& d=\sqrt{2^{2}+(-7)^{2}} \quad d=\sqrt{53} \\
& d=\sqrt{4+49}
\end{aligned}
$$

